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We present a view of the physics of phase distortion in a traveling wave tube(TWT) based on unique
insights afforded by the MUSE models of a TWT[J. Wöhlbier, J. Booske, and I. Dobson, IEEE Trans. Plasma
Sci. 30, 1063 (2002)]. The conclusion, supported by analytic theory and simulations, is that prior to gain
compression phase distortion is due to harmonic frequencies in the electron beam and the resulting “inter-
modulation” frequency at the fundamental, and not the often cited “slowing down of electrons in the electron
beam.” We draw these conclusions based on MUSE simulations that allow explicit control of electron beam
frequency content, an analytic solution to the S-MUSE model[J. Wöhlbier, J. Booske, and I. Dobson, IEEE
Trans. Plasma Sci.30, 1063(2002)] that reveals that phase distortion is due to the fact that the fundamental
frequency is an intermodulation product of itself, and large signal LATTE[J. Wöhlbier, J. Booske, and I.
Dobson, IEEE Trans. Plasma Sci.30, 1063(2002)] simulations that are modified to remove the effect of the
slowing down of electrons in the electron beam. As applications of the theory we compare S-MUSE simula-
tions to an amplitude phase model using the analytic phase transfer curve, we study dependence of phase
distortion on circuit dispersion and electron beam parameters at the second harmonic with large signal LATTE
simulations for narrow and wide band TWT designs, and we consider the phase distortion theory in the context
of TWT linearization.
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I. INTRODUCTION

Traveling wave tubes(TWTs) are widely used as ampli-
fiers in communications and electronic countermeasure sys-
tems. It is well known that in many applications amplifier
nonlinearities can compromise system performance. This pa-
per is part of a continuing effort to understand sources of
nonlinear distortions in TWTs using simulation and analysis.

Conventionally, TWT nonlinearity has been quantified via
single frequency input-output transfer characteristics. In par-
ticular AM/AM (output power vs input power) curves and
AM/PM (the derivative of output phase vs input power)
curves are used(see Fig. 1). AM/AM curves exhibit a “linear
gain” region, followed by “nonlinear” gain compression and
saturation for increasing input powers. In a linear amplifier
the AM/PM curve is a flat line, i.e., the difference in phase
between the output and the input does not depend on input
power. In the TWT, as with any amplifier, the output phase
does depend on input power as seen in Fig. 1. The physics of
this dependence is the subject of this paper. One sees in Fig.
1 that the AM/PM curve deviates from linear behavior for
input powers much smaller than those that first produce com-
pression in the AM/AM curve. This shows that phase distor-
tion in TWTs is significant even in the regime defined as the
linear gain region based on the AM/AM characteristics.

From a systems perspective the AM/AM and AM/PM
nonlinearities are said to “cause” undesirable output spectral
content such as intermodulation products[1]. However, since
the transfer curves come from a single frequency input-
output measurement, they do not contain explicit information
about the physics internal to the TWT. In fact, from a physics

perspective it is better to say that the transfer curves “cap-
ture” aspects of TWT nonlinearity, and thus can be used to
predict input-output behavior of the TWT. For example, an
input-output model such as anamplitude-phase model[2]
using the single frequency TWT transfer characteristics pre-
dicts intermodulation spectrum around closely spaced carri-
ers [3], but the amplitude-phase model does not predict har-
monics of the carrier frequencies. Since it is well established
that the carrier harmonics(and sum frequencies) exist in the
output spectrum of a TWT, one concludes that the single
frequency transfer characteristics capture certain nonlinear
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FIG. 1. AM/AM and AM/PM curves at 14 GHz generated by
LATTE, MUSE, and S-MUSE for the TWT parameters in Tables I
and II. The vertical lines atPin=−19.5 dBm andPin=−26.5 dBm
correspond to 1 dB gain compression(3.8 dB backed off from satu-
ration) and 10 dB backed off from saturation, respectively, as pre-
dicted by LATTE. The simulations to generate the results accounted
for circuit frequencies up to the third harmonic and ten space charge
harmonics.
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physics of the TWT, but fail to capture other nonlinear phys-
ics.

The physics behind the AM/AM curve can be understood
in terms of power saturation, which is a result of electron
bunches falling into accelerating phases of the rf wave and
hence taking energy from the rf wave. The physics of phase
nonlinearity, we claim, is less well understood. Several au-
thors have claimed that phase distortion is due to the reduc-
tion of the average electron beam velocity. For example,
Gilmour [4] claims that phase distortion “occurs because, as
drive level is increased, more power is extracted from the
electron beam and the velocity of the beam is reduced. As
beam velocity decreases, the velocity of the rf wave on the
circuit is reduced and this increases the phase length of the
TWT.” Furthermore, Ezura and Kano[5] state “in Refs.
[1–5] where saturation was excluded, one may easily grasp
the physical image of the phase distortion due to the decrease
of the electron velocities, but not quantitatively.” However,
in this paper we show using several arguments that, at least
prior to 1 dB of gain compression, the slowing down of the
electron beam is not the dominant mechanism for phase dis-
tortion.

Dimonte and Malmberg studied TWT phase distortion in
the context of trapping oscillations[6], i.e., in operating re-
gimes where the TWT is strongly overdriven. Although this
is an interesting regime to understand physics, in a practical
amplifier there are “no compelling reasons to study the inter-
action much beyond saturation”[6]. The explanation of
phase distortion in Ref.[6] relies on energy conservation
relations of approximate single frequency models. Ultimately
the phase evolution simply appears as a term in a conserva-
tion relation that must shift to “simultaneously balance en-
ergy flow.”[6] In contrast to the motivation of Ref.[6] which
was the nonlinear physics beyond saturation, our model de-
velopment emphasizes the physics of phase distortion prior
to saturation, and we provide a functional, quantitative pre-
dictive model of phase distortion.

In this paper we offer a view of phase distortion provided
by the new spectral TWT models MUSE and S-MUSE[7].
By artificially suppressing harmonic and dc effects in the
electron beam equations of the MUSE model, we show that
the beam second harmonic plays a far greater role in the
AM/PM distortion prior to gain compression and power satu-
ration than the average slowing down of electrons. Next,
using an approximate analytic solution of the output phase
for the approximate nonlinear model S-MUSE, we conclude
that the phase distortion prior to gain compression is mostly
a result of the fact that the fundamental frequency is an in-
termodulation frequency of itself. We also compare the spec-
trum of an amplitude-phase model using the output phase of
the approximate analytic solution to the spectrum predicted
by simulation of the S-MUSE model. Furthermore, since it is
found that phase distortion depends primarily on the second
harmonic existing in the electron beam, we study the depen-
dence of the phase distortion on circuit dispersion and elec-
tron beam parameters at the second harmonic. Finally, using
insights developed throughout the paper we discuss our
phase distortion theory in the context of TWT linearization.

In Sec. II we give an overview of the TWT models used
in our study, referring the reader to Ref.[7] for model details.

In Sec. III we present simulation, theory, and physical argu-
ments to support the case that the majority of phase distor-
tion, at least prior to 1 dB of gain compression, is due to
beam harmonics and intermodulation distortion of the funda-
mental with itself, and not due to the slowing down of elec-
trons in the beam. In Sec. IV we compare S-MUSE simula-
tions of two frequency inputs to results from an amplitude-
phase model that uses the output phase of the approximate
analytic solution of the S-MUSE model. Section V presents
results from parametric studies of phase distortion as a func-
tion of circuit dispersion and beam parameters at the second
harmonic. We discuss TWT linearization in Sec. VI, and the
paper is concluded in Sec. VII. Two appendixes provide the-
oretical detail to support Sec. III.

II. TWT MODELS

In this paper we use the nonlinear TWT models MUSE,
S-MUSE, and LATTE derived in Refs.[7,8]. MUSE and
LATTE are frequency domain formulations of the same ini-
tial equations where MUSE uses Eulerian coordinates for the
electron beam and LATTE uses Lagrangian coordinates for
the electron beam. The S-MUSE model is obtained from
MUSE by neglecting certain nonlinearities, and was derived
because it is analytically solvable while retaining many sa-
lient nonlinear features of MUSE. The major implication of
choosing Eulerian coordinates in MUSE and S-MUSE is
that, unless special methods are employed[9], the models do
not predict electron overtaking and hence do not agree with
Lagrangian models in the region of power saturation. How-
ever, there is much physics to be learned from the Eulerian
models prior to electron overtaking as this and other work
[10–12] have shown. The reader is referred to Ref.[7] for
detailed analysis and comparison of the models.

For the present work there are two primary benefits of the
Eulerian models over Lagrangian models such as LATTE.
First, the spectral representation of the electron beam in
MUSE allows one to investigate how electron beam frequen-
cies, including “dc” effects such as the reduction of the av-
erage electron beam velocity, affect phase distortion. In prin-
ciple, Lagrangian simulations may also be modified to
eliminate spectral components from the electron beam de-
scription by generalizing a method we present in this paper.
However, such modifications are far more cumbersome than
the analogous MUSE simulations. Second, S-MUSE pos-
sesses an analytic solution which has a direct physical inter-
pretation of phase distortion not afforded by either MUSE or
LATTE.

The TWT models in Ref.[7] are derived from a one-
dimensional(1D) nonlinear model which uses transmission
line equations to represent the slow wave circuit and Eule-
rian electron beam equations. The MUSE model is the result
of a spectral analysis of these equations, whereas LATTE is
the result of spectral analysis of the field quantities and a
transformation of the electron beam equations to Lagrangian
coordinates. Both models are steady state and assume that all
frequencies present are integer multiples of a base frequency
v0. There are five quantities in the TWT description: trans-
mission line voltageV, transmission line currentI, space
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charge electric fieldE, electron beam velocityv, and electron
beam charge densityr. The MUSE model is a system of
ordinary differential equations for the spatially dependent
complex Fourier coefficients of the five quantities per fre-

quency:Ṽ,szd , Ĩ,szd ,Ẽ,szd , ṽ,szd, and r̃,szd where, indexes
the frequencyf,v0 and z is the axial distance. From the
Fourier coefficients the circuit voltage may be synthesized
via

Vsz,td = o
,=−`

`

Ṽ,szdeif ,v0sfz/u0g−td, s1d

whereu0 is the dc electron beam velocity. The other physical
variables may be similarly synthesized from their Fourier
coefficients.

For the circuit quantities and space charge field LATTE

retainsṼ,szd , Ĩ,szd, andẼ,szd. However, the Eulerian electron
beam velocity and density functionsvEsz,cd andrEsz,cd are
transformed to the Lagrangian velocity and density functions
vLsz,c0d andrLsz,c0d. We also define the functionCsz,c0d
which is the nonlinear transformation between the coordinate
systems and represents the phase position of fluid elementc0
with respect to the stream wave[13] at axial positionz. See
Ref. [7] for details of the transformation between Eulerian
and Lagrangian coordinates.

III. PHASE DISTORTION MECHANISMS

In this section we study using simulation and analysis the
mechanisms of phase distortion. We defineFsPind as the
phase difference between the TWT output and input of the
“hot” circuit voltage wave at frequencyf,v0, where the
“small signal” phase difference is subtracted off. Using this
definition, any nonzero value ofF is considered a “distor-
tion” from the linear behavior. The term hot refers to the fact
that the spatially dependent local velocity and local wave
number of the voltage wave at frequencyf,v0 are in general
not equal to the “cold circuit” quantities, i.e., the velocity
and wave number of a voltage wave with no beam present,
nor are they in general equal to the electron beam velocityu0
or effective electron stream wave numberf,v0/u0. Rather,
the local velocity and wave number of the hot wave must be
computed from analytic theory or simulation.

If we define blin as the hot wave number predicted by
linear theory[14], i.e., the wave number corresponding to the
exponentially growing mode of the solution, andbnlsPin ,zd
as a local hot wave number predicted by either nonlinear
analytic theory or nonlinear simulation, then we have

FsPind =E
0

L

fbnlsPin,zd − bling dz, s2d

wherez=L is the TWT output. Note thatblin is independent
of input powerPin and axial positionz. For small input pow-
ersbnl tends toblin.

Rewriting Eq. (2) in terms of linear and nonlinear hot
phase velocitiesvlin

hot andvnl
hotsPin ,zd we get

FsPind = f,v0E
0

L F 1

vnl
hotsPin,zd

−
1

vlin
hotGdz. s3d

Therefore, by definition phase distortion is the result of the
nonlinear velocity change of the hot circuit wave. When the
cold circuit velocity is less than the dc electron beam veloc-
ity (Pierce velocity parameterb.0), the hot velocity usually
first slows down relative tovlin

hot, increasing the electrical
length of the TWT relative to the linear behavior, and can
speed back up in saturation. When the cold circuit velocity is
greater than the dc electron beam velocity(Pierce velocity
parameterb,0), the hot velocity usually first speeds up rela-
tive to vlin

hot, decreasing the electrical length of the TWT rela-
tive to the linear behavior, and can slow back down in satu-
ration (see, for example, Fig. 1 of Ref.[5]). In general the
factors influencingvnl

hotsPin ,zd are not fully understood for all
operating regimes of the TWT.

It will be useful to define hot phase velocity using the
model variables we have introduced. For frequencyf,v0 we
write a term of Eq.(1) as

uṼ,szdueiu,szdeif ,v0sfz/u0g−td, s4d

and from this one can find that

v,
hotszd =

f,v0

be +
du,

dz

, s5d

wherebe= f,v0/u0 is the stream wave number.

A. Simulation results

For the first set of simulation studies we choose param-
eters for a representative Ku-band TWT. The electron beam
and circuit parameters are listed in Table I and the cold cir-

cuit phase velocityṽph, interaction impedanceK̃, and space

charge reduction factorR̃ [4,14] are found in Table II. The
parameters represent a single lossless, constant pitch section.
AM/AM and AM/PM curves at 14 GHz are given in Fig. 1.

TABLE I. Ku-band TWT electron beam and circuit
parameters.

Parameter Value

Cathode voltage −4.92 kV

Beam current 0.177 A

Beam radius 0.3175 mm

Helix radius 0.60 mm

TABLE II. Ku-band TWT dispersion parameters.

fsGHzd ṽphs3107 m/sd K̃sVd R̃

14.0 3.858 32.625 0.156

28.0 3.673 1.161 0.389

42.0 3.591 0.061 0.547
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Space charge reduction factors for harmonics higher than the
third are computed by Eq.(23b) of Ref. [15].

Since the Eulerian models apply only prior to electron
overtaking, we restrict our attention in this section to input
powers smaller than the 1 dB gain compression point. From
the AM/AM curve in Fig. 1 we find that for our TWT design
this corresponds to 3.8 dB backed off from saturation. Ac-
cording to Ref.[4] the maximum point of AM/PM distortion
typically occurs anywhere between 3 and 10 dB backed off
from saturation, indicating that the input powers to which we
restrict our attention are of practical interest.

The spectral structure of the MUSE model allows one to
artificially suppress electron beam(and circuit) frequencies
as a diagnostic tool to discover where various nonlinearities
manifest in TWT behavior. In the following MUSE simula-
tions we include and exclude dc effects[time average elec-
tron beam velocityṽ0szd and time average electron beam
charge densityr̃0szd], second harmonics, and higher order
harmonics. A frequencyf,v0 is excluded from a simulation
by forcing derivatives of the TWT state variables at that

frequency(e.g.,dṼ, /dz,dr̃, /dz, etc.) to zero in the simula-
tion.

Figure 2 shows output phase versus input power curves
from MUSE simulations with varying frequencies included.
When the fundamental frequencysfd is the only frequency in
the simulation the model reduces to a linear model, and there
is no phase distortion. Separately including the dc frequency
and the second harmonic with the fundamental alone(“dc
+ f” and “f +2f,” respectively) indicates that most of the
phase distortion is associated with the inclusion of the sec-
ond harmonic and not due to reduction of the dc velocity of
the beam. Furthermore, including all frequencies up to the
tenth harmonicsdc+f +¯ +10fd supports the conclusion
that most of the phase distortion is associated with the inclu-
sion of the second harmonic. When the second harmonic is

added to the simulationsf +2fd we include both the circuit
and beam second harmonic components. Therefore, the rela-
tive influence of the beam second harmonic vs the circuit
second harmonic on the level of phase distortion cannot be
gleaned from Fig. 2.

Since the circuit voltage hot phase velocity is the physical
quantity internal to the TWT that causes phase distortion[see
Eq. (3)], we look at MUSE predictions of hot phase velocity
for Pin=−19.5 dBm including and excluding different fre-
quencies. The results shown in Fig. 3 confirm that the inclu-
sion of the second harmonic accounts for most of the change
in hot phase velocity, which in turn accounts for most of the
phase distortion in Fig. 2 via Eq.(3). The variation of the hot
phase velocity forzø4 cm is due to the mixing of the three
modes of linear Pierce theory[14].

To get a feel for the level of the circuit and beam har-
monic distortions in the case of Fig. 3, we plot in Fig. 4 the
circuit power at the fundamental through third harmonic, and
the magnitude of the beam density modulation at the funda-
mental through tenth harmonics. Note that at the output
sz=9 cmd the second harmonic circuit power is about 20 dB
less than the fundamental, while all of the beam charge den-
sity modulation harmonics are within 1 dB of each other.
This indicates that even in a narrow band TWT, where the
second harmonic is out of the linear gain bandwidth, the
harmonic beam modulations are very strong, even at an input
power corresponding to the 1 dB gain compression point.
The beam velocity harmonics, not shown here, look very
similar to the beam charge density harmonics, and are within
1.3 dB of each other at the output.

Next we provide more evidence that the average velocity
reduction in the electron beam is not the primary cause of
phase distortion by using MUSE and LATTE simulations as
well as a physical argument. First we consider a large signal
LATTE simulation that has been modified to remove the av-
erage velocity reduction using the approach given in Appen-

FIG. 2. Output phase vs input power curves generated by MUSE
simulations with varying frequencies included in the simulation.
The legend indicates which frequencies were included in the simu-
lation generating the trace. The maximum input power represented
on the graph corresponds to the 1 dB gain compression point as
seen in Fig. 1. For the input powers in this figure LATTE and
MUSE have nearly identical phase predictions accounting for dc
through the tenth harmonic, as seen in Fig. 1.

FIG. 3. MUSE computations of the hot phase velocity, Eq.(5),
at the fundamental frequency with varying frequencies included in
the simulation. The legend indicates which frequencies were in-
cluded in the simulation generating the trace. The input powerPin

=−19.5 dBm corresponds to the 1 dB gain compression point
shown in Fig. 1. For this input power the phase difference as pre-
dicted by LATTE is nearly identical to MUSE when accounting for
dc through the tenth harmonic.
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dix B. In Fig. 5 we show the phase distortion produced by
LATTE simulations with and without the average velocity
adjustment. The result confirms that average velocity reduc-
tion, at least prior to gain compression, is not the primary
cause of the phase distortion.

We limit the maximum power in Fig. 5 toPin=
−23 dBm for computational reasons. As discussed in Appen-
dix B, we use Eq.(B6) to compute the evolution of the
average disk velocity in a LATTE simulation. For input pow-
ers greater than or equal toPin=−23 dBm, the number of
space charge harmonics required for Eq.(B6) to converge
can become quite large. For convergence withPin=
−23 dBm 100 space charge harmonics were required.

To verify that the average velocity computed from the
Lagrangian calculation of Eq.(B6) agrees with the MUSE

computation of the dc component of the beam velocityṽ0szd,
we compare the average beam velocities of both models be-
fore and after the removal of the spatially evolving average
velocity for Pin=−23 dBm in Fig. 6. For this input power
note that the average electron beam velocities predicted by
MUSE and LATTE are virtually identical.

Finally, we consider how the reduction of the average
beam velocity could not account for the majority of phase
distortion. First we consider a comparison of the hot phase
velocity predicted by MUSE and LATTE[computed using
Eq. (5)] to the average beam velocity computed by MUSE in
Fig. 7 for Pin=−20 dBm. According to Fig. 2, the phase dis-
tortion for this input power is about 10° which, according to
Fig. 7, corresponds to a change in hot phase velocity of about
1%. As seen in Fig. 7 the average beam velocity for this
input power only reduces from its initial value by 0.2%. If
this reduction in beam velocity solely determined the change
in the hot phase velocity to cause phase distortion, then over
the length of 0.5 cm[16] Eq. (3) indicates that this only

FIG. 4. Circuit power at the fundamental through third harmonic
(a), and beam charge density magnitude at the fundamental through
tenth harmonic(b) for the case of Fig. 3. Forzø8 cm in (b), the
charge density magnitude at the fundamental frequency is the larg-
est and the magnitudes of the higher order harmonics decrease with
increasing harmonic order. At the outputsz=9 cmd the second har-
monic circuit power is about 20 dB less than the fundamental, while
all of the beam charge density modulation harmonics are within
1 dB of each other.

FIG. 5. Output phase for LATTE simulations with and without
removal of the average beam velocity reduction as described in
Appendix B. One hundred space charge harmonics were used to
computekvl0 from Eq. (B6).

FIG. 6. Average electron beam velocities computed by LATTE
and MUSE. LATTE traces were computed by Eq.(B6), MUSE
traces are the dc frequency of the velocityṽ0szd. Shown are com-
putations with and without the velocity adjusted to remove the
change in the dc component. The input power used to generate the
traces isPin=−23 dBm, which is the maximum power appearing in
Fig. 5.

FIG. 7. Average electron beam velocity computed by MUSE,
and hot phase velocity at the fundamental computed by LATTE and
MUSE for Pin=−20 dBm. The ranges of values on both vertical
axes are 3% of the value of the respective curve atz=5 cm.
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accounts for about 1.3° of phase distortion, far below the 10°
seen in Fig. 2.

B. Analytic results

The Eulerian model S-MUSE[7], a simplification of
MUSE, admits an analytic solution which allows us to probe
further into the physical mechanisms of phase distortion. Be-
cause of the approximations made in deriving the S-MUSE
model, the phase distortion predicted by MUSE, S-MUSE,
and LATTE agree qualitatively but not quantitatively. How-
ever, we postulate that the physical interpretations made for
the S-MUSE model are also true for the MUSE and LATTE
models for input powers prior to gain compression.

The structure of the S-MUSE solution for a physical vari-
able at a particular frequency is a linear combination ofz
dependent complex exponentials[10–12]. For example, the
voltage at the fundamental may be approximated as

Ṽ1sz,td = hAdr expsmdr + ikdrdz+ o
q

Anl
q expsmnl

q

+ iknl
q dzjeif 1v0sfz/u0g−td, s6d

where the dr subscript refers to the driven portion of the
solution, i.e., the exponentially growing mode due to the
fundamental input, and the nl subscript refers to quantities
occurring as a result of the nonlinear interactions. The sub-

script 1 appearing inṼ1 and f1 refer to the fundamental fre-
quency. In Eq.(6) Adr, Anl

q are complex andmdr, mnl
q , kdr, knl

q

are real. Forms similar to Eq.(6) apply to the other TWT
state variables at the fundamental frequency.

In Eq. (6) each complex exponential is related to a par-
ticular order of intermodulation product[17], and each suc-
cessive term in the sum overq accounts for the next higher
order odd intermodulation product(third, fifth, etc.). Since
the fundamental frequency is an odd order intermodulation
product of itself, e.g., 2f1− f1=3f1−2f1= f1 etc., we can ap-
proximate Eq.(6) as

Ṽ1sz,td = hAdre
gdrz + Anl

3IMegnl
3IMz + Anl

5IMegnl
5IMz + ¯jeif 1v0sfz/u0g−td,

s7d

where we have written the growth ratesm and wave numbers
k in Eq. (6) together as complex propagation constantsg.

The complete solution to S-MUSE is made up of an infi-
nite number of complex exponentials[11,12]. In Eq. (7) we
only express the dominant terms and ignore the terms that do
not contribute appreciably to the solution near the output of
the TWT. Due to the neglect of nongrowing or weakly grow-
ing modes in Eqs.(6) and(7), both from the linear and non-
linear portions of the solution, evaluation of the equations at
z=0 does not give the correct value of the input. The equa-
tions are therefore only good approximations, both in ampli-
tude and phase, for lengths such that the exponentially grow-
ing modes dominate the total solution(for examplezù4 cm
in Fig. 7). In Appendix A we provide the details of the ana-
lytic solution of S-MUSE required to compute Eqs.(6) and
(7).

In Fig. 8 we compare the output phase computed with Eq.
(6) to the output phase obtained by numerical solution of the

S-MUSE equations(Eqs. (25)–(29) of Ref. [7]) for input
powers up to the 1 dB compression point. We show the out-
put phase of Eq.(6) accounting for only the 3IM and also
accounting for the 3IM and the 5IM. The analytic prediction
accounting for the 5IM matches the simulation almost iden-
tically.

Comparing the AM/PM curves(derivatives of the output
phase) of S-MUSE and LATTE in Fig. 1 we see that
S-MUSE predicts most of the phase distortion of the large
signal simulation prior to gain compression. Then from Fig.
8 we conclude that the majority of thelarge signal TWT
phase distortion[18] prior to gain compression is predicted
by Eq.(6). Hence the primary mechanism for the large signal
phase distortion is that the fundamental frequency is an in-
termodulation product of itself, which is the view that comes
from the analytic solution to the S-MUSE model. We at-
tribute the output phase discrepancies between LATTE and
S-MUSE to the nonlinearities that were neglected in deriving
S-MUSE, including the approximation of the average beam
velocity and the average charge density as constants, and the
resulting underpredictions of intermodulation spectra by
S-MUSE as can be seen in Ref.[7].

Based on the above comparison of large signal simula-
tions to the analytic solution to S-MUSE, and supported by
the simulations of Sec. III A, we submit the following view
of TWT phase distortion valid prior to gain compression, and
speculatively into saturation.

The fundamental drive frequency induces second har-
monic distortions on the electron beam, and hence into sec-
ond harmonic circuit quantities. These second harmonic dis-
tortions combine back with the beam and circuit quantities at
the fundamental frequency to produce distortions in the
beam quantities, and hence the circuit voltage, at the funda-
mental frequency. In a similar manner the third harmonic
distortions in the electron beam and circuit combine with the
second harmonic beam and circuit distortions to produce dis-

FIG. 8. Numerical solutions and analytic predictions of
S-MUSE output phase. For the phase of Eq.(7) to match the nu-
merical solution the contributions from 3IM and 5IM terms need to
be included. The maximum input power represented on the graph
corresponds to the 1 dB gain compression point as seen in Fig. 1.
The numerical solution accounts for circuit frequencies up to the
third harmonic and ten space charge harmonics.
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tortions in the circuit voltage at the fundamental frequency.
This process also occurs for higher order harmonics, but

to a more limited extent as the order becomes higher. There-
fore, the voltage at the fundamental frequency is composed
of the driven mode, the 3IM and 5IM distortion modes, as
well as higher order odd intermodulation modes. The relative
weights of the driven mode and the distortion modes deter-
mine the evolving phase of the fundamental circuit voltage,
and hence the evolving hot phase velocity of the fundamental
circuit voltage. The hot phase velocity then determines the
phase distortion via Eq.(3). The S-MUSE equations(Eqs.
(25)–(29) of Ref. [7]) may be used to convince oneself of the
above mixing process.

One may wonder why in Fig. 2 thef +2f MUSE simula-
tion produced an output phase smaller than thef +¯ +10f
MUSE simulation, while in Fig. 8 the S-MUSE analytic so-
lution accounting only for the 3IM mode predicts an output
phase larger than simulation of the S-MUSEf +¯ +10f sys-
tem. First, S-MUSE is a different nonlinear system than
MUSE, so subtle qualitative differences may be expected
between the models. In particular, simulation of the S-MUSE
f +2f system predicts a slightly larger output phase(not
shown) than simulation of the S-MUSEf +¯ +10f system,
which is opposite to what is seen in Fig. 2 predicted by the
MUSE model. Therefore, one should not be prejudiced as to
whether they expect S-MUSE approximate analytic solutions
to predict larger or smaller phase distortions than the
S-MUSE f +¯ +10f system.

Furthermore, one may suspect that since thef +2f MUSE
simulation predicts an output phase very close to thef +¯

+10f MUSE simulation in Fig. 2, that the linear(drive)
mode and a 3IM mode would be sufficient in the analytic
expression to approximate the numerical S-MUSE solution
in Fig. 8. This would logically follow from the fact that a
system that only accounts for second harmonic excitations
on the beam can only produce 3IM distortions at the funda-
mental, and cannot produce 5IM distortions at the fundamen-
tal. However, the analytic solution to thef +2f S-MUSE sys-
tem contains an infinite number of complex exponential
modes[12]. In general, we see no obvious or simple rela-
tionship between the number of these analytic complex ex-
ponential modes required to adequately approximate a solu-
tion, and the number of frequencies included in the model.
That is, even though thef +2f S-MUSE system has only two
frequencies, the complete analytic solution to this system has
an infinite number of complex exponentials, and there is noa
priori reason to expect that only two of these exponentials
(e.g., the linear and the 3IM modes) are sufficient to approxi-
mate the solution. In fact, based on simulations of thef
+2f S-MUSE system(not shown) we find that the analytic
solution to the f +2f S-MUSE system would also require
three complex exponential modes(the drive, the 3IM, and
one other) to adquately approximate the output phase.(Note
that this third analytic mode would not be the same 5IM
mode of Fig. 8, because thef +2f system cannot describe 5th
order intermodulation physics.) In any event, in Fig. 8, we
see that three complex exponentials, specifically the linear,
the 3IM, and the 5IM modes are necessary and sufficient to
analytically approximate the S-MUSEf +¯ +10f system. In
turn, we claim that this three-mode analytic solution is a

good approximation to the infinite frequency system that is
technically needed to represent the partial differential equa-
tions S-MUSE was derived from.

For more insight into how the hot phase velocity at the
fundamental changes to produce phase distortion, we con-
sider the evolution of the fundamental voltage phaseu1szd as
defined in Eq.(4) and computed from Eq.(6). For simplicity
we consider input powers for which only the 3IM contribu-
tion to the analytic solution is required to match the numeri-
cal solution(e.g.,Pin less than −28 dBm in Fig. 8). For such
inputs we have

u1szd=tan−1F ImhAdre
smdr+ikdrdz + Anle

smnl+iknldzj
RehAdre

smdr+ikdrdz + Anle
smnl+iknldzjG . s8d

Working through the calculations in Appendix A one can
show that for the input powers under considerationuAdru
@ uAnlu. However, for large enough values ofz the terms
Adre

mdrz and Anle
mnlz can become comparable sincemnl

=3 mdr. In the limiting cases of small and largez one has
du1/dz=kdr anddu1/dz=knl, respectively, implying constant
values of hot phase velocity via Eq.(5). The limiting case of
smallz is seen, for example, between 4 cm and 7 cm in Fig.
7 [the behavior forz,4 cm is due to the complex exponen-
tial modes neglected in Eq.(6)]. Since 3IMs rarely attain
comparable power levels to fundamentals before power satu-
ration, the limiting case of largez wheredu1/dz=knl is not
attained. Therefore the change in hot phase velocity as a
function of distance along the TWT forz.7 cm in Fig. 7
reflects the evolution of the relative weights of the modes in
Eqs.(6) and (8).

In Fig. 9 we show S-MUSE numerical solutions and ana-
lytic predictions of the evolution of the hot phase velocity for
Pin=−20 dBm. Consistent with Fig. 8 the contributions from
the 3IM and 5IM terms are required for this input power to

FIG. 9. Analytic and numerical predictions of S-MUSE hot
phase velocity at the fundamental frequency. Inclusion of the 3IM
and 5IM contributions to the analytic solution, Eq.(6), are required
to match the numerical results. All of the complex exponentials
from the linear portion of the analytic solution are included to get
the correct behavior of the hot phase velocity forz,4 cm. The
numerical solution includes circuit frequencies up to the third har-
monic and ten space charge harmonics.
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accurately model the evolution of the hot phase velocity seen
in the numerical solution.

IV. AMPLITUDE-PHASE MODEL AND S-MUSE

A popular model for predicting amplifier performance us-
ing the nonlinear input-output amplitude and phase transfer
characteristics is the so-called amplitude-phase(AP) model
[2]. In this section we compare an AP model that uses the
analytic solution for the output phase from Eq.(6) to
S-MUSE simulations with two frequency inputs. While AP
models have been proposed and studied, none have used ana-
lytic solutions to nonlinear physics based models for the
transfer curves. As in Sec. III, we restrict our attention to
input powers in the “linear gain region” of the AM/AM
curve.

For an input voltage

xstd = Astdcossvctd, s9d

the output voltage in the linear portion of the AM/AM curve
for the AP model is

ystd = gAstdcoshvct + F̃fAstdgj, s10d

whereg is a constant gain factor, andF̃sVind is the voltage
phase difference between the output and input for an input of

Vin cosvct. F̃sVind in Eq. (10) is obtained fromFsPind in Eq.
(2) by using[7]

Pin =
2Vin

2

K̃
, s11d

whereK̃ is the circuit interaction impedance at frequencyvc.
If we choose

Astd = 4Vin cossvmtd, s12d

thenxstd can be equivalently written as

xstd = 2Vinhcosfsvc + vmdtg + cosfsvc − vmdtgj s13d

and the output of the AP model is

ystd = g4Vin cossvmtdcoshvct + F̃f4Vin cossvmtdgj.

s14d

Using F̃ predicted by Eq.(6) we compute the output spec-
trum of Eq. (14) and compare it to a simulation of the
S-MUSE equations where the input is given by Eq.(13). We
perform the calculations for two different input powers and
two different values ofvm with vc/2p=14.0 GHz.

First we fix the input power to −30 dBm and compute the
spectra forvm/2p=1.0 MHz andvm/2p=100.0 MHz. The
results for the narrow spacing are shown in Fig. 10 and the
results for the wide spacing are shown in Fig. 11. For
vm/2p=1.0 MHz the 3IM and 5IM predictions of the AP
model are 2.3 dB and 4.2 dB below those of the simulation,
respectively. Forvm/2p=100.0 MHz the 3IM and 5IM pre-
dictions of the AP model are 2.9 dB and 4.7 dB below those

of the simulation, respectively. SinceF̃ is computed at a

single frequency, namelyvc, the AP model is expected to
apply only over a narrow band of frequencies aboutvc. We
see that the AP model with a narrow frequency spacing is in
closer agreement with the simulation.

For the same frequency spacings we repeated the above
calculations with an input powerPin=−23 dBm. The results
for the narrow spacing are given in Fig. 12 and the results for
the wide spacing are given in Fig. 13. In both cases the AP
model predictions of the 3IM are about 5 dB lower than the
simulation results, whereas the 5IM predictions are greater
than the simulation results by about 2 dB.

While the reasons for the increased deviations of the
higher power input relative to the lower power input are not
entirely understood, we believe that it might lie in the gain
compression that the simulation inherently contains and is
ignored in our AP model. Relative toPin=−50 dBm an input
of Pin=−30 dBm corresponds to 0.11 dB of gain compres-
sion, whereas an input ofPin=−23 dBm corresponds to
0.5 dB of gain compression predicted by S-MUSE simula-
tions (see Fig. 1). To test this hypothesis an AP model ac-
counting for the gain compression could be constructed and
tested.

FIG. 10. Comparison of S-MUSE simulation and the AP model
output spectra for two input tones. The input power isPin=
−30 dBm and the modulation frequency isvm/2p=1.0 MHz.

FIG. 11. Comparison of S-MUSE simulation and the AP model
output spectra for two input tones. The input power isPin=
−30 dBm and the modulation frequency isvm/2p=100.0 MHz.
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It is instructive to note that the AP model does not predict
spectral content at the harmonics of the carrier frequencyvc,
even though it is well known that such spectral distortion
exists. This fact is inherent in the construction of the AP
model since when transfer curves are measured or simulated,
attention is restricted to the TWT behavior at the input and
output terminals only at the fundamental frequency. The re-
lation between the transfer curve distortions and the har-
monic spectrum is important if one is designing devices such
as linearizers based only on TWT transfer curves, where the
temptation might be to restrict one’s attention to only the
fundamental frequency. In the case of phase distortion Sec.
III provides what we believe to be the key connections be-
tween harmonic distortions and phase distortion at the fun-
damental.

V. PARAMETRIC DEPENDENCE OF PHASE DISTORTION

In Sec. III we showed that the second harmonic frequency
influences output phase at the fundamental frequency

through an intermodulation process. Therefore, it is of inter-
est to know how phase distortion at the fundamental depends
on circuit dispersion and electron beam parameters at the
second harmonic. Using LATTE we look at the dependence
of the AM/PM distortion at the fundamental on the cold cir-

cuit phase velocityṽph, circuit interaction impedanceK̃, and

electron beam space charge reduction factorR̃ at the second
harmonic. We independently set these parameters to five val-
ues and generate AM/AM and AM/PM curves for each pa-
rameter value. The values are evenly spaced between the
respective parameter value at the fundamental and the pa-
rameter value at the third harmonic. The parameter values
chosen are not necessarily physically realizable since we are
directly changing the parameter, not the circuit dimensions or
electron beam dimensions to attain the set of parameters.
However, the results give a good indication of the relative
role the parameters play in phase distortion.

We expect the phase distortion to behave differently when
the second harmonic is in the linear gain bandwidth of the
TWT, since the second harmonic will then have a larger am-
plitude and produce a larger fundamental intermodulation.
Therefore we choose two TWT designs for this study, one in
which the second harmonic is in the linear gain bandwidth,
and one in which the second harmonic is out of the linear
gain bandwidth. For the “narrow band” TWT we use the
Ku-band design of Sec. III, and for the “wide band” design
we use simulation parameters based on the experimental
Wisconsin Northrup Grumman(X-WING) 1.5 octave
C-band TWT[19]. The electron beam and circuit parameters
for X-WING are listed in Table III and the relevant disper-
sion parameters for X-WING are listed in Table IV.

In Figs. 14–16 we show the simulation results for the
Ku-band TWT. From Fig. 14 we see that the phase distortion
is relatively unaffected by the phase velocity at the second
harmonic. We see from Fig. 15 that the interaction imped-
ance at the second harmonic can affect the input power at
which the maximum AM/PM conversion occurs and the
maximum value of AM/PM conversion. Furthermore, larger
values of interaction impedance can produce AM/PM con-

FIG. 12. Comparison of S-MUSE simulation and the AP model
output spectra for two input tones. The input power isPin=
−23 dBm and the modulation frequency isvm/2p=1.0 MHz.

FIG. 13. Comparison of S-MUSE simulation and the AP model
output spectra for two input tones. The input power isPin=
−23 dBm and the modulation frequency isvm/2p=100.0 MHz.

TABLE III. X-WING TWT electron beam and circuit
parameters.

Parameter Value

Cathode voltage −2.75 kV

Beam current 0.22 A

Beam radius 0.55 mm

Helix radius 1.4 mm

TABLE IV. X-WING TWT dispersion parameters.

fsGHzd ṽphs3109 cm/sd K̃sVd R̃

2.00 2.487 103.094 2.787310−2

4.00 2.515 38.132 9.802310−2

6.00 2.552 15.411 1.846310−1
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version coefficients of zero. Finally, from Fig. 16 we see that
smaller values of space charge reduction factor have a larger
maximum AM/PM conversion coefficient, but the input
power where the maximum AM/PM conversion is attained is
unchanged.

In Figs. 17–19 we show the simulation results for the
C-band TWT. From Fig. 17 we see that the phase distortion
is relatively unaffected by the phase velocity at the second
harmonic as was the case for the narrow band TWT. The
interaction impedance at the second harmonic for the wide
band TWT displays the clearest trend and has the greatest
effect on AM/PM distortion as seen in Fig. 18. Larger values
of interaction impedance produce the largest AM/PM distor-
tion. Finally, from Fig. 19 we see that the space charge re-
duction factor does not have much effect on either the loca-
tion or value of the maximum AM/PM coefficient.

We expect that analysis of the S-MUSE equations to-
gether with additional simulations could be used to under-
stand the relative roles of circuit and beam harmonics on

phase distortion, as well as how TWT bandwidth influences
phase distortion. However, preliminary investigation has es-
tablished that such a study will be nontrivial and beyond the
scope of this paper. Therefore, we leave the study to future
work.

VI. INSIGHTS INTO TWT LINEARIZATION

In this section we use our insights into the mechanisms of
phase distortion to discuss two separate, but related, methods
of TWT linearization. TWT linearization is presently a very
popular area of research due to the large economic benefits to
be gained from high power linear amplification[20].

A. Phase linearization by harmonic injection

The method of harmonic injection has long been used to
reduce the harmonic power in the TWT output(see e.g., Ref.
[21]). We have recently reported a theory of harmonic injec-

FIG. 14. AM/AM and AM/PM distortion for the Ku-band de-
sign at 14 GHz for five values of cold circuit phase velocity at the
second harmonic. The legend represents the five values ranging
from the minimum parameter value(min) to the maximum param-
eter value(max).

FIG. 15. AM/AM and AM/PM distortion for the Ku-band de-
sign at 14 GHz for five values of cold circuit interaction impedance
at the second harmonic. The legend represents the five values rang-
ing from the minimum parameter value(min) to the maximum pa-
rameter value(max).

FIG. 16. AM/AM and AM/PM distortion for the Ku-band de-
sign at 14 GHz for five values of space charge reduction factor at
the second harmonic. The legend represents the five values ranging
from the minimum parameter value(min) to the maximum param-
eter value(max).

FIG. 17. AM/AM and AM/PM distortion for the C-band design
at 2 GHz for five values of cold circuit phase velocity at the second
harmonic. The legend represents the five values ranging from the
minimum parameter value(min) to the maximum parameter value
(max).

J. G. WÖHLBIER AND J. H. BOOSKE PHYSICAL REVIEW E69, 066502(2004)

066502-10



tion based on the models used in this paper[11,12,22]. The
harmonic injection theory describes the fundamental and har-
monic waves as superpositions of driven and nonlinear
modes. This is similar to what is described in Sec. III B, but
in the case of harmonic injection the dominantnonlinear
contribution at the fundamental and harmonic is due to a
second order product rather than a third order product.

In standard harmonic injection schemes the inputs are ad-
justed such that the modes of the harmonic solution cancel at
the output, and hence the amount of harmonic in the output
wave form is reduced. However, if the claims that we have
made in this paper are true, i.e., that the voltage at the fun-
damental should be considered as a superposition of modes,
then one should also be able to use harmonic injection to
manipulate the voltage phase at the fundamental by manipu-
lating the relative magnitudes and phases of the modes. In
Figs. 20 and 21 we demonstrate using the large signal code
LATTE that this is indeed possible.

We consider harmonic injection in the X-WING TWT
(see Sec. V) with a fundamental frequency of 2 GHz. In Fig.

20 we show the relative circuit voltage phase at the funda-
mental frequency vs axial distance for a “small signal” input
s−10 dBmd, a large signal inputs18 dBmd without harmonic
injection, and the large signal input with harmonic injection.
Indeed one sees that with harmonic injection the fundamen-
tal output phase may be made to be same value as the small
signal output phase, even with a large signal input. In Fig. 21
we show the fundamental and harmonic circuit powers vs
axial distance with and without the harmonic injection. This
shows first that 18 dBm input is a large signal input since the
fundamental circuit power is saturating at the output, and
second that to obtain this “phase linearization” the funda-
mental output power is reduced by about 3 dB.

It is important to note that the large signal LATTE model

FIG. 18. AM/AM and AM/PM distortion for the C-band design
at 2 GHz for five values of cold circuit interaction impedance at the
second harmonic. The legend represents the five values ranging
from the minimum parameter value(min) to the maximum param-
eter value(max).

FIG. 19. AM/AM and AM/PM distortion for the C-band design
at 2 GHz for five values of space charge reduction factor at the
second harmonic. The legend represents the five values ranging
from the minimum parameter value(min) to the maximum param-
eter value(max).

FIG. 20. Circuit voltage phase vs axial distance for a small
signal input s−10 dBmd, a large signal inputs18 dBmd, and the
large signal input with harmonic injection. With harmonic injection
the output phase for the large signal input is made equal to the
output phase for the small signal input. The injected harmonic
power and phase are 17 dBm and −47.5°, respectively. The funda-
mental input phase is 0° in all cases. Voltage phase is with respect
to the cold circuit wave at 2 GHz.

FIG. 21. Circuit power vs axial distance for a large signal input
(18 dBm) with and without harmonic injection to obtain “phase
linearization.” The fundamental output power with harmonic injec-
tion is reduced by about 3 dB from the case with no injection. The
injected harmonic power and phase are 17 dBm and −47.5°, respec-
tively. The fundamental input phase is 0° in both cases.
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hasno representation of the distinct modes in its formulation,
but Figs. 20 and 21 demonstrate that the modes do exist in
the solutions to LATTE(also see Refs.[10,12,22] for further
proof of this fact).

B. The linearization method of Chenet al.

Chenet al. [23] have recently presented a new method of
linearizing TWTs. The method involves applying small bias
voltages to the(electrically floating) helix based on either
“direct feed” or feedback processing of the input signal. The
bias voltage is a function of the input power “envelope,” and
has the effect of adjusting the electron beam velocity by
changing the potential an electron sees as it enters the helix.
The change in electron beam velocity can be equivalently
viewed as a change in electron beam voltage. The explana-
tion for how the linearization technique works offered in Ref.
[23] is based on the view that phase distortion is due to
slowing down of electrons in the beam. Our view of phase
distortion led us to hypothesize an alternative explanation,
consistent with the conceptual framework described here and
in Ref. [12]. The experimental results given in Figs. 4 and 5
of Ref. [23] are for TWT input conditions 9 dB backed off
from saturation, well within the range of applicability of our
theory.

We submit that linearization using the technique of Ref.
[23] of a two tone input signal as shown in Figs. 4 and 5 of
Ref. [23], and similar to the input spectra of Sec. IV of this
paper, should not be explained in terms of phase distortion.
First, we claim that a constant voltage applied to the helix to
compensate for phase distortion for single frequency sine
wave inputs can be explained in terms of linear TWT theory.
Second, we claim that the linearization of a two tone input
signal with the technique should be viewed as the injection
of a beam velocity modulation at the difference frequency of
the two input frequencies.

Applying a dc voltage bias to the helix compensates for
the nonlinear output phase distortion by changing the elec-
trical length of the TWT, i.e., the number of wavelengths in
the TWT, based on thelinear Pierce theory[14]. That is, the
dependence of the linear “hot wave number”blin (see Sec.
III ) on input voltage is sensitive enough such that a small
change in beam voltage can account for a non-negligible
phase change at the output of the TWT. Using the driven
term of Eq.(6) one gets

blin = kdrsV0d + f1v0Î me

2eV0
, s15d

where V0 is beam voltage,me is electron mass, ande is
electron charge. In Eq.(15) kdrsV0d is the imaginary part of
the eigenvalue ofA1 (see Appendix A) corresponding to the
exponentially growing solution, and we have used thateV0
=s1/2dmeu0

2. One can show that for small changes inV0 Eq.
(15) is approximately a linear function ofV0 and that the
accumulated phaseblinsV0dL can change by as much as 25°
for less than a 1% change inV0.

In Fig. 22 we show LATTE calculations of output phase
vs input power for five values of beam voltage. The total
range of beam voltages spans less than 1% of the design

beam voltage, but the phase difference between these values,
which to leading order can be predicted by linear theory, is
about 25°. To obtain a constant output phase for any value of
input power, one can select from the parametrized output
phase vs input power curves. One chooses the curve that
passes through the desired value of output phase and input
power, and sets the bias voltage, by a feedback loop, for
example, such that the beam voltage is equal to the value
labeling the intersecting curve. In this manner the phase dis-
tortion, which is a single frequency input measurement, can
be compensated for. Note that the input power used for the
experiment in Ref.[23] would correspond approximately to
Pin=−26 dBm in Fig. 22, i.e., 9 dB backed off from satura-
tion (see Fig. 1). To show that the phase offset for different
helix voltages is well approximated by linear theory for all
input powers, we include input powers up to and beyond
saturation.

We saw in Sec. IV that an input signal consisting of two
frequencies with a spacing of 2vm centered aboutvc could
be written as

xstd = cossvmtdcossvctd, s16d

where typicallyvm!vc. If such a signal is passed through a
diode for envelope detection, the diode output signal will
have a frequency of 2vm due to the diode rectification. If this
low frequency signal is then used for the helix bias, one
effectively has an input modulation on the electron beam
voltage at the difference frequency 2vm. Furthermore, this
signal is applied to a “grid compensation circuit” in Ref.[23]
which would also have the effect of an input modulation on
the electron beam voltage at the difference frequency 2vm.
Therefore, we claim that the new technique of linearization
put forward by Chenet al. [23] is equivalent to injecting a
difference frequency modulation on the beam velocity.

Our recent theory of harmonic injection in a TWT[11,12]
has shown that it is theoretically possible to obtain inter-
modulation cancellation by injection of the difference fre-
quency in the circuit voltage. However, because the differ-
ence frequency is typically outside of the linear gain
bandwidth, substantial input powers at the difference fre-

FIG. 22. Output phase vs input power for several values of dc
beam voltage for the Ku-band TWT design. The range of the bias
voltages spans 48 V, less than 1% of the design beam voltage.
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quency are expected to be required. Since the electron beam
has no such bandwidth limitations, it is expected that modest
difference frequency modulations of the beam velocity, such
as with the proposed scheme, may be more effective than
difference frequency injection of circuit voltage. This topic
will be explored further in a future work.

VII. CONCLUSIONS

Phase distortion has been said to “dominate TWT nonlin-
earity” [23] in TWTs. In the literature many authors have
attributed phase distortion to the slowing down of electrons
in the electron beam, i.e., the reduction of the average elec-
tron beam velocity(see, e.g., Refs.[4,5,23]). Through simu-
lation and analysis we offer evidence that phase distortion, at
least prior to 1 dB gain compression, is not due to slowing
down of electrons in the beam. Rather, we show thatphase
distortion arises from harmonic generation in the electron
beam and an intermodulation process that results in distor-
tions at the fundamental.

The implications of the understanding of phase distortion
are many. First, provided with a view of nonlinear TWT
physics, one may be led to consider alternative parametric
dependencies and explanations for physical phenomenon. We
have provided examples of such studies in Secs. IV–VI. Fur-
thermore, the understanding may possibly lead to improved
TWT designs, since the notions that a designer has about
how a device works inevitably influence how they proceed
with a design.

Using the MUSE, S-MUSE, and LATTE TWT models we
explore phase distortion in a TWT. The unique ability of the
MUSE model to systematically suppress the effects of differ-
ent frequencies in the nonlinear TWT behavior shows that
the second harmonic distortion in the electron beam is the
dominant factor in causing phase distortion, at least prior to
gain compression. Furthermore, we show that the average
slowing down of electrons is not the primary cause of phase
distortion using MUSE simulations in addition to large signal
LATTE simulations that were corrected to remove the aver-
age velocity reduction.

With the approximate analytic solution to the S-MUSE
model we give an insightful picture of the fundamental fre-
quency also being a self-intermodulation product. We show
that prior to 1 dB gain compression the analytic solution
accounting for the 3IM and 5IM contributions has a phase
distortion that closely matches the phase distortion from
simulation of the S-MUSE equations. We also show that the
change in voltage hot phase velocity which causes phase
distortion is due to an evolving balance of the driven and
intermodulation modes in the solution.

Leveraging off of our understanding of phase distortion
we consider several applications. First, we compare S-MUSE
simulations to an amplitude-phase model that uses the ap-
proximate analytic solution to S-MUSE for the output phase
vs input power. We see that there are discrepancies in the
intermodulation spectra predicted by the two methods, and
that the disagreement is worse for wider frequency spacings
and for larger input powers. The study reinforces our view
that the amplitude-phase model is an incomplete picture of

nonlinear TWT physics, and that measuring single frequency
phase distortion characteristics captures only a part of the
harmonic and intermodulation physics happening internal to
the TWT. Second, we study how phase distortion depends on
circuit and electron beam parameters at the second harmonic.
We find that circuit interaction impedance at the second har-
monic has the greatest effect on AM/PM distortion, espe-
cially when the second harmonic is within the linear gain
bandwidth of the TWT. Third, we use the insight that the
fundamental is composed of driven and nonlinear modes,
together with knowledge of the mechanisms of harmonic in-
jection[11,12,22], to propose harmonic injection as a method
of phase linearization. We show using the large signal code
LATTE that with a properly adjusted harmonic input, one
can obtain the same fundamental output phase for small and
large signal fundamental inputs. Note that earlier explana-
tions for phase distortion, such as that of Ref.[6], do not
easily explain this phenomenon because they do not account
for the existence of driven and nonlinear modes. Finally, we
consider a technique of linearization[23] and offer a physi-
cal explanation for the linearization mechanism. In this case
again we propose that phase distortion is not the proper way
of looking at the linearization, and that a view of the inter-
modulation and difference frequency physics is required.
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APPENDIX A: ANALYTIC FORMULAS FOR EQ. (6)

In this appendix we provide a formalism for solving the
S-MUSE model for the components necessary to compute
Eq. (6). We use the vector notation of Ref.[7] where x,

=fx,1
¯x,5

gT=fṼ, Ĩ, Ẽ, ṽ, r̃,gT. The differential equation
for x, is

ẋ, = A,x, + o
m,n

fm+fn=f,

H,mnsxm,xnd, sA1d

where matrix and tensor componentsA,i j
and H,imjnk

are
listed in Appendix II of Ref.[7]. One can show that Eq.(A1)
may be solved with a series solution

x, = o
a=1

`

x,
sad, sA2d

and that this series converges under the appropriate condi-
tions [10,12]. The indexa is related to the order of inter-
modulation product[10]. The formulas for the terms of the
series are given by
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x,
s1d = eA,zw,, a = 1, sA3d

x,
sad =E

0

z

eA,sz−tdo
b=1

a−1

o
m,n

fm+fn=f,

H,mnfxm
sbdstd,xn

sa−bdstdg dt,

a ù 2, sA4d

wherew, contains the initial values for frequencyf,v0 [7]
andeA,z is the matrix exponential of the matrixA,z [24].

The complex exponential modes of the vectorx,
sad are

indexed byp

x,
sadszd = o

p=1

N,
sad

a,
sadfpgesm,

sadfpg+ik,
sadfpgdz, sA5d

with a,
sadfpg a complex vector. Sums like Eq.(A5) are ordered

so thatm,
sadf1g is the largest of all them,

sadfpg.
For brevity we only provide details to compute the 3IM

contribution to Eq.(6) and refer the reader to Refs.[11,12]
for details on how to compute higher order contributions. To
compute the terms of Eq.(6) and the input-output phase
differenceF we need to compute in order thep=1 modes
x1

s1df1g, x2
s2df1g, x1

s3df1g. Details of the calculations are provided
in Ref. [12].

1. Series term x1
„1…

The dominant term in the first ordersa=1d drive fre-
quencys,=1d solution is

x1
s1df1g = a1

s1df1gem1
s1df1gzeik1

s1df1gz, sA6d

where

a1
s1df1g = P1QP1

−1w1, sA7d

m1
s1df1g = Rehl11

j, sA8d

k1
s1df1g = Imhl11

j, sA9d

and

Qi,j = H1, i = j = 1

0, otherwise,
sA10d

assuming thatP1, the modal matrix ofA1, has the eigenvec-
tor associated withl11

, the eigenvalue ofA1 with the largest
real part, in its first column. Then for Eq.(6) we have

Adr = a11

s1df1g, sA11d

mdr = m1
s1df1g, sA12d

kdr = k1
s1df1g. sA13d

2. Series term x2
„2…

For x2
s2df1g we have

x2
s2df1g = dominant mode ofHE

0

z

eA2sz−td

3H211fx1
s1df1gstd,x1

s1df1gstdgdtJ . sA14d

Let

c2 = H211sa1
s1df1g,a1

s1df1gd, sA15d

then

x2
s2df1g = P2S2s2l11

dP2
−1c2e

2l11
z sA16d

=a2
s2df1ge2m1

s1df1gzei2k1
s1df1gz, sA17d

where

S,i,j
sgd ; 5 1

g − l, j

, i = j

0, otherwise.

sA18d

The eigenvaluesl, j
of A, have the same order as the eigen-

vectors ofA, appearing in columns ofP,. We have assumed
that the real part of 2l11

is larger than the real part ofl21
, the

eigenvalue ofA2 with the largest real part, and that 2l11
Þl2j

for j =1, . . . ,5, as is most often the case.

3. Series term x1
„3…

The third order term at the drive frequency is

x1
s3df1g = dominant mode ofHE

0

z

eA1sz−td

3fH1,2,−1sx2
s2df1gstd,x−1

s1df1gstdd

+ H1,−1,2sx−1
s1df1gstd,x2

s2df1gstddgdtJ . sA19d

Let

c1 = H1,2,−1sa2
s2df1g,a−1

s1df1gd + H1,−1,2sa−1
s1df1g,a2

s2df1gd,

sA20d

with a−1=a1
* then

x1
s3df1g = P1S1s2l11

+ l11

* dP1
−1c1e

s2l11
+l11

* dz sA21d

=a1
s3df1ge3m1

s1df1gzeik1
s1df1gz. sA22d

Therefore for Eq.(6)

Anl = a11

s3df1g, sA23d

mnl = 3m1
s1df1g, sA24d

knl = k1
s1df1g. sA25d
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Any of the TWT state variables may be computed by
choosing the appropriate vector components froma1

s1df1g and
a1

s3df1g.
Similarly to compute the 5IM contribution to Eq.(6) one

needs to computea=4 anda=5 terms. For details of the
computations we refer the reader to Ref.[12].

APPENDIX B: EFFECT OF AVERAGE BEAM VELOCITY
IN LATTE

In this appendix we provide the theory necessary to re-
move the effect of the reduction of the average beam velocity
in the large signal code LATTE. We first need an expression
to compute the average velocity from a LATTE simulation,
then a way to remove this effect from a subsequent simula-
tion.

In Eulerian coordinates the electron beam average veloc-
ity is

kvszdl0 =
1

2p
E

2p

vEsz,cddc, sB1d

which in Lagrangian coordinates becomes[7]

kvszdl0 =
1

2p
E

2p

vLsz,c0dU ] C

] c0
Udc0 sB2d

=
1

2p
E

2p

I0sc0d
ArLsz,c0d

dc0, sB3d

where c=v0sz/u0− td is a phase variable,I0sc0d is the dc
beam current,A is the beam cross sectional area, and the
other quantities are defined in Sec. II of the paper. We can
write rL using the Fourier synthesis equation in Lagrangian
coordinates

rLsz,c0d = o
,=−`

`

r̃,e
if ,Csz,c0d sB4d

where

r̃, =
1

2p
E

2p

I0sc0d
Avsz,c0d

e−i f ,Csz,c0d dc0. sB5d

For computations the integrals become sums overN “disks,”
we consider a finite number of positive frequenciesM, and
we can combine Eqs.(B3)–(B5) to get

kvszdl0 = o
i=1

N F o
,=−M

M

o
j=1

N
eif ,sCi−C jd

v j
G−1

, sB6d

where we have assumedI0sc0d= I0 and used the notation
Csz,c0id=Ci and vsz,c0id=vi, wherec0i is an initial disk
phase. For a simulation with small enough input power we
can confirm that Eq.(B6) is correct by comparing it to the
average electron beam velocityṽ0szd computed by the
MUSE model.

To remove the effect ofkvszdl0 in a subsequent LATTE
simulation, we first compute the adjusted disk velocities

ṽi = vi − kvl0 + u0. sB7d

We confirm by computing Eq.(B6) using the adjusted ve-
locities that for the power levels we are interested in we have

kṽil0 = u0, sB8d

then given the adjusted velocities we compute disk phase

trajectoriesC̃i using [7]

] C̃i

] z
=

v0

u0
S1 −

u0

ṽi
D . sB9d

From the adjusted velocities and phase trajectories we can
compute the adjusted electron beam density coefficient given
by Eq. (B5) where the integral is replaced by a sum over
disks. Finally, one can compute a circuit voltage at the fun-
damental frequency corresponding to the adjusted beam
charge density from the LATTE lossless circuit equations[7]

dṼ,

dz
= −

i f ,v0

u0
Ṽ, −

i f ,v0K̃,

ṽph,

Ĩ,, sB10d

dĨ,

dz
= −

i f ,v0

K̃,ṽph,

Ṽ, −
i f ,v0

u0
Ĩ, + i f ,v0Ar̃,, sB11d

whereṼ, and Ĩ, are the complex circuit voltage and circuit

current envelopes as defined in Eq.(1), K̃, is the circuit
interaction impedance at frequencyf,v0, ṽph, is the circuit
phase velocity at frequencyf,v0, andA is the electron beam
cross sectional area.
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